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Abstract

We study the dynamics and explore the controllability of a family of

sphere-plate mechanical systems. These are nonholonomic systems with a

five-dimensional configuration space and three independent velocities. They

consist of a sphere rolling in contact with two horizontal plates. Kinematic

models of sphere-plate systems have played an important role in the control

systems literature addressing the kinematics of rolling bodies, as well as

in discussions of nonholonomic systems. However, kinematic analysis falls

short of allowing one to understand the dynamic behavior of such systems.

In this work we formulate and study a dynamic model for a class of sphere-

plate systems in order to answer the question: “is it possible to impart a

net angular momentum to a sphere which rolls without slipping between

two plates, given that the position of the top plate is subject to exogenous

forces?”

∗This work was funded by ARO grant DAAG 55 97 1 0114.
†This work was done while the author was with the Division of Engineering and Applied Sciences at

Harvard University, Cambridge, MA.
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Figure 1: A Sphere-Plate System.

1 Introduction

In his influential book on analytical dynamics, E.T. Whittaker [1] brought together many of

the significant results in classical mechanics, up to that time. He included a rich collection of

problems in rigid body dynamics, some involving nonholonomic systems and rolling motion.

More recently, with applications of mathematics branching out to the areas of robotics and

object manipulation, such systems have come to the fore yet again, this time with emphasis

on control theory. In this work we make a detailed study of what is perhaps one of the

simplest nonholonomic mechanical systems, called the sphere-plate system. The system

under consideration consists of a sphere rolling between two horizontal plates. The bottom

plate is regarded as being fixed, while the top plate is movable in the horizontal plane (see

Figure 1). Our purpose is twofold. We want to first formulate a dynamic model for a family

of sphere-plate systems and then to use that model in the context of control theory, in order

to explore the controllability properties of these systems.

It is intuitively known — and can be proven mathematically — that a sphere can be

arbitrarily re-positioned and re-oriented on a plane by rolling (see for example [2], [3], [4]).

In this paper we investigate the problem of spinning-up the sphere by moving the top plate.

By the term “spin” we understand the rotational velocity of the sphere about the vertical

axis through its center. The dynamic model will allow us to define a “zero-translational-

velocity submanifold” as the set of system states that correspond to a spinning sphere with
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the top plate being stationary. This idea will be formalized in Sec. 2.3. What we find is that a

fundamental relationship exists between the inertial symmetry of the sphere and the problem

of achieving a desired spin. In that respect, the class of sphere-plate systems considered in

this work exhibit the same critical reliance on inertial asymmetry and nonholonomic effects

as the recently popular “rattleback top” (see [5], [6], [7]). Specifically, we show that the only

spheres to which one can impart a steady spin are those whose geometric centers and centers

of mass do not coincide. Although we focus on a specific nonholonomic system, the study of

such questions can contribute towards understanding more general spin-up problems [8].

The kinematics of sphere-plate systems are a prototype for more general nonholonomic

systems and as such they have been used to demonstrate key ideas in nonlinear control.

In [9], [10], optimal control problems were formulated for a simplified kinematic model,

sometimes referred to as the “nonholonomic integrator” (see Appendix). More recently, [11]

used the same model to illustrate new ideas in pattern generation and approximate inversion.

Kinematic models for sphere-plate systems have also received attention in previous works on

the control problem of re-positioning and re-orienting rigid bodies under rolling constraint

([2], [12], [13] and others). The ideas of reachability and Lie algebras play a natural role in

that setting. In [14], [2] and others, algorithms were presented for deciding the existence of

admissible paths between contact configurations of two rolling bodies and for finding such

paths. Those algorithms were in turn applied in the areas of robotics and multi-fingered

manipulation ([15], [16], [17], [18] and others).

To advance our understanding of sphere-plate systems beyond what is afforded by kine-

matics, we will draw on [1] which discusses a general approach to the equations of motion for

nonholonomic systems (originally due to Hamel), as well as a number of interesting examples

relevant to this work. Our approach is consistent with nonholonomic mechanics where the

equations of motion are extrema of some energy functional, allowing arbitrary variations on

the coordinates and using Lagrange multipliers to effect the constraints. This is in contrast

to the vakonomic approach [19] where the energy function is first restricted to a submanifold

defined by the constraints and variations are allowed only on that submanifold.
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In engineering, one often wants to consider the mechanical system not just from the

point of view of analytical mechanics but also from the point of view of control systems. In

analytical mechanics the equations of motion for a dynamical system are obtained with em-

phasis on describing the behavior of the mechanical system. In the control systems approach

one seeks instead to identify exogenous input signals, obtain input/output formulations and

prescribe desired system responses [20]. Both of these points of view are relevant to the goals

of this work and will be used as appropriate in our discussion.

In Sec. 2 we derive the equations of motion for a class of sphere-plate systems. We

show that asymmetry plays a critical role with respect to the controllability and existence

of integral invariants for the sphere-plate system, viewed as a control system. By the term

“integral invariant” we understand a function that depends only on the state of the control

system and has constant value along trajectories regardless of the choice of control inputs. In

Sec. 3 we present simulation results that demonstrate some control strategies for achieving

spin. The choice of control inputs that produced spin was guided by physical intuition about

the mechanical system. It would be desirable to compute inputs that achieved a desired spin

and also satisfied some type of optimality condition, such as minimum energy or minimum

time, to achieve that spin. That problem remains open.

2 A Class of Asymmetric Sphere-Plate Systems

Consider a sphere of unit radius (Figure 2) that rolls without slipping between two plates,

both plates being horizontal with respect to some spacefixed inertial frame. It is assumed

that both sphere-plate contacts (top and bottom) are maintained at all times. The bottom

plate is fixed while the top plate is allowed to move horizontally, acted on by external forces

or by a potential field. We will ignore gravity.

The five-dimensional configuration space for the sphere-plate system is C = R
2 × SO(3).

The phase space is three-dimensional due to the rank-2 rolling constraint that is imposed.

We choose coordinates on the space C as follows: Let F be a bodyfixed inertial frame whose
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Figure 2: A Class of Sphere-Plate Systems.

origin is fixed at the center of the sphere. The matrix Θ ∈ SO(3) will describe the orientation

of the sphere. The columns of Θ are the spacefixed coordinates of the unit vectors of F . The

vector x
4
= [x1, x2]T ∈ R2 specifies the horizontal position of the center of the sphere. Unless

otherwise noted, quantities will be expressed in a spacefixed coordinate frame whose z-axis

is normal to the plates. A potential field U(x) acts on the top plate, causing it to move

horizontally. We will take U to be differentiable. The sphere-plate system can be considered

an autonomous dynamical system with the top plate being influenced by the potential U(x).

From a control system point of view, we will take a pair of external forces u1, u2 acting

horizontally on the top plate to be the exogenous inputs, with the potential field U being

identically zero.

In the bodyfixed frame F the sphere’s center of mass has coordinates d ∈ R
3, with

|d| = r ≤ 1. The mass of the sphere is ms > 0. The rotational inertia measured about any

axis through the center of mass is αms with α > 0. The mass of the top plate is mp ≥ 0.

Under these assumptions, the rotational inertia of the sphere, expressed in any frame located

at its center of mass, is given by the 3× 3 matrix αmsI. We take ei to be the ith standard

basis vector in R
n and define the quantities:

dt
4
= Θd− e3

db
4
= Θd+ e3

(1)

which represent the (spacefixed) vectors from the top and bottom contacts respectively to

the sphere’s center of mass. In the following, numerical subscripts will be used to indicate
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elements of vectors, unless otherwise noted. For example, x2 = 〈x, e2〉.

Armed with the above definitions, we will first obtain the equations of motion for the

sphere-plate system assuming the mass of the top plate is mp = 0. We will subsequently

augment our model to include the inertial effects of the top plate.

2.1 Case I: Top Plate with zero Mass (mp = 0)

Let ω ∈ R
3 be the angular velocity of the sphere, expressed in spacefixed coordinates. The

position and orientation of the sphere evolve according to ẋ

0

 = S(ω)e3 (2)

Θ̇ = S(ω)Θ (3)

where S : R3 → so(3) is a transformation that takes vectors in R
3 into 3×3 skew-symmetric

matrices 1. Note that Eq. 2 expresses the rolling constraint which dictates that the instan-

taneous velocity of the bottom contact should be zero.

Let p ∈ R
3 be the spacefixed position of the center of mass of the sphere. If KE is the

sphere’s kinetic energy, then the equations of motion for the sphere are [1]:

d

dt
(
∂KE

∂ṗ
) + γ ×

∂KE

∂ṗ
= F −

∂U(x)

∂p
(4)

d

dt
(
∂KE

∂ω
) + γ ×

∂KE

∂ω
= T − S

(
∂U(x)

∂p

)
dt (5)

where γ ∈ R
3 is the vector of angular velocities of the inertial frame in which we chose

to express matters. In our case, γ = 0 because the spacefixed frame does not rotate. The

vectors F, T ∈ R
3 are the external forces and torques (including those forces necessary to

1For x, y ∈ R3
, x× y = S(x) · y with

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0
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enforce the nonholonomic constraints) acting on the center of mass of the sphere. Note that

we have chosen to superimpose the effects of the potential U together with those of the

exogenous forces u (implicitly included in F and T ) that are acting on the top plate. This

is done for convenience since we can subsequently set either U or u to zero, thus obtaining

the equations of motion for the control system or the autonomous system respectively.

Assuming the mass of the top plate is zero, the kinetic energy for the system is

KE =
ms

2
(ṗT ṗ+ αωTω) (6)

with the linear velocity of the sphere’s center of mass given by

ṗ =

 ẋ

0

+ S(ω)Θd = S(ω)db (7)

Substituting for the kinetic energy and linear velocity (Eq. 6, 7) into the equations of

motion (Eq. 4,5) we obtain a set of equations that involve the evolution of the angular

velocities:

ms (S(ω̇)db + S(ω)2Θd) = F − ∂U(x)
∂p

αmsω̇ = T − S
(
∂U(x)
∂p

)
dt

(8)

The external forces acting on the sphere do so only through the contacts with the plates.

Let u, c ∈ R3 be the external forces acting at the top and bottom contacts respectively. The

vector c corresponds to the forces that are necessary to enforce the rolling constraint. If we

express u and c in spacefixed coordinates, we can write:

F = c+ u, T = S(u)dt + S(c)db (9)

Because u3 and c3 are co-linear and the vectors dt, db, have the same projection onto the

horizontal plane, we can combine the effects of u3 with c3 and regard

u
4
= [u1 u2 0]T (10)

to be the external force applied to the top plate.
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We combine Eq. 8, 9, into a system of six equations

ms (S(ω̇)db + S(ω)2Θd) = u+ c− ∂U(x)
∂p

αmsω̇ = S
(
u− ∂U(x)

∂p

)
dt + S(c)db

(11)

that must be solved for the evolution of ω. Eliminating the constraint forces c, we obtain:

(
αI − S(db)

2
)
ω̇ =

2

ms

S(e3)

(
u−

∂U

∂p

)
− S(db)S(ω)2Θd (12)

If we choose to express the sphere’s orientation using roll-pitch-yaw angles then for θ ∈ R3

we can write:

Θ = Rotz(θ3)Roty(θ2)Rotx(θ1) (13)

Without loss of generality, we can take the center of mass to be located along the x-axis of

the bodyfixed frame and write d = re1, where r
4
= |d|. In that case, we observe that for

α > 0,

det(αI − S(db)
2) = α(1 + α+ r2 − 2r sin θ2)2 > 0 (14)

This determinant is positive as long as r ≤ 1, so that the center of mass is located inside the

sphere. In particular, the matrix (αI − S(db)
2) is symmetric, positive definite for α > 0 and

r ≤ 1, with eigenvalues

λ1, λ2 = 1 + α+ r2 − 2r sin θ2, λ3 = α. (15)

We summarize the equations of motion for the rolling sphere:

ẋ =

 ω2

−ω1


Θ̇ = S(ω)Θ

ω̇ = (αI − S(db)
2)
−1
(

2
ms
S(e3)

(
u− ∂U

∂p

)
− S(db)S(ω)2Θd

) (16)

Alternatively, using the orientation angles θ, the equation for the evolution of Θ (second of

Eq. 16) can be replaced by:

θ̇ = K(θ)ω (17)
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with

K(θ) =


sec θ2 cos θ3 sec θ2 sin θ3 0

− sin θ3 cos θ3 0

cos θ3 tan θ2 sin θ3 tan θ2 1

 (18)

2.2 The Sphere-Plate Equations

We will now modify the model presented in the previous Section, to include the effects of a

top plate with mass mp > 0. For this purpose, we consider the interconnection of the plate

and sphere systems. We note that the top plate has a translational velocity which is twice

that of the center of the sphere. If us ∈ R
2 is the horizontal force applied to the sphere by

the top plate and up = [u1 u2]T ∈ R
2 is the external force acting horizontally on top plate,

then the dynamics of the rolling sphere (Eq. 16) combined with the dynamics of the top

plate

2mpẍ = up − us (19)

lead to the equations of motion for the sphere-plate system:

ẋ =

 ω2

−ω1


Θ̇ = S(ω)Θ

ω̇ = J−1
(
−S(db)S(ω)2Θd+ 2

ms
S(e3)

(
u− ∂U

∂p

))
(20)

with u
4
= [u1 u2 0]T and

J
4
=
(
αI − S(db)

2 −
4mp

ms

S(e3)2
)

(21)

We will call the above set of equations (Eq. 20, 21) the “sphere-plate equations”. In the

special case where U = 0 we will refer to them as the “sphere-plate control equations”. We

remark that J has units of length squared. It can be checked that the matrix J is symmetric,

positive definite for α > 0.
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2.3 The Control-System Viewpoint

We are now ready to explore the dynamic model given by the sphere-plate control equations

(Eq. 20) and address the question of whether or not it is possible to force the sphere to

spin without translational motion by some choice of control inputs u1, u2. In the following

we have in mind that there are no potential energy terms (i.e. U = 0) so that the control

inputs are the only external forces acting on the top plate. We will consider the special case

mp = 0 for the top plate. For a top plate with mass mp > 0 the discussion is largely similar

but with more cumbersome arithmetic. That case will be omitted here. However, the case

mp > 0 will be addressed in our simulation of the sphere-plate system presented in Sec. 3.

If we define the system state to be the vector

χ
4
=


x

θ

ω


with χ ∈ R2 × TSO(3), then we can re-write the sphere-plate control equations in the form

χ̇ = f(χ) +
2∑
i=1

gi(χ)ui (22)

where f ∈ R8 is the drift and g1, g2 ∈ R8 the control vector fields.

We are interested in knowing whether or not there exist control inputs that can steer the

system from any initial state to any other state, i.e. connect a pair of states by a trajec-

tory in the state-space. For this purpose, we consider the reachable set associated with the

sphere-plate control system. For the sake of completeness, we include some of the relevant

definitions. Detailed discussions of the following concepts can be found in [3], [4], [21] and

others.

Definition 1 The reachable set associated with a control system is the set of states that can

be reached by the system starting from an arbitrary initial condition and using appropriate

control inputs.
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Definition 2 A control system

χ̇ = f(χ) +
m∑
i=1

gi(χ)ui (23)

with χ in an smooth n-dimensional manifold X and u ∈ R
m is controllable if for any two

states χ0, χ1, there exist a finite time T and control inputs ui(·) defined on [0, T ] so that

χ0 +
∫ t=T

t=0

(
f(χ) +

m∑
i=1

gi(χ)ui

)
dt = χ1

Definition 3 The controllability Lie algebra associated with the control system of Eq. 23 is

the Lie algebra generated by the drift and control vector fields: {f, g1, . . . , gm}LA.

The sphere-plate system evolves on a subset D of the ten-dimensional tangent bundle

TC, C being the five-dimensional configuration space. Because the rolling constraint (Eq. 2)

is of rank 2 everywhere, D = R
2×TSO(3) is an eight-dimensional submanifold of TC. In D

we define the following two submanifolds:

Definition 4 The zero-translational-velocity submanifold Z is the manifold

Z
4
= {χ ∈ D, 〈χ, e6〉 = 〈χ, e7〉 = 0} ∼= R

2 × SO(3)× S1

Definition 5 The configuration submanifold K is the manifold

K
4
= {χ ∈ Z, 〈χ, e8〉 = 0} ∼= R

2 × SO(3)

The set Z contains state values for which the top plate is stationary. It is a six-

dimensional submanifold of D because the constraint ẋ = [0 0] has rank 2 everywhere

on D. Similarly, K is defined by imposing a rank-1 constraint on Z. Therefore K is a five-

dimensional submanifold of Z and is isomorphic to the configuration space C. We observe

that K ⊂ Z ⊂ D. It is known that K is reachable. In other words, the sphere can be arbi-

trarily re-positioned and re-oriented by appropriate top plate motions: this fact corresponds

to the kinematic controllability of the sphere-plate system. In the following we show that

the sphere-plate system is controllable in D if and only if r > 0.
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Because the reachable set associated with a control system is invariant under feedback,

we can apply a transformation to the controls, of the type

u 7→ ψ(χ) + u (24)

ψ : D → R
2 continuous

in order to cancel the drift terms in the evolution of ω1, ω2, without altering the controllability

properties of the system. This cancellation of the drift terms for ω1, ω2, is possible because if

r ≤ 1, the 3× 3 matrix J that enters the sphere-plate dynamics (last of Eq. 20), is positive

definite. Thus, its upper-left 2×2 sub-matrix is invertible, allowing us to solve for the inputs

that force

ω̇1 = u1, ω̇2 = u2

Without loss of generality, we choose d = re1 for the bodyfixed location of the center of

mass relative to the center of the sphere. The resulting expressions for the drift and control

vector fields are:

f =



ω2

−ω1

K(θ)ω

0

0

νf


, g1 =



0

0

0

1

0

νg1


, g2 =



0

0

0

0

1

νg2


(25)

where

νf
4
= r2 cos θ2

ωTQω

δ

νg1

4
=

2r cos θ2 cos θ3(1− r sin θ2)

δ

νg2

4
=

2r cos θ2 sin θ3(1− r sin θ2)

δ
(26)

δ
4
= 2a+ r2 + r2 cos(2θ2)
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and Q is a rank-2 3× 3 matrix:

Q =


2 sin θ3 cos θ2 cos θ3 − cos θ2 cos(2θ3) − sin θ2 sin θ3

− cos θ2 cos(2θ3) −2 sin θ3 cos θ2 cos θ3 sin θ2 cos θ3

− sin θ2 sin θ3 sin θ2 cos θ3 0

 . (27)

We note that the coordinates x and θ1 are ignorable, i.e. they do not appear on the right-

hand side of the equations of motion. This is because we chose d = re1 and because we

arranged matters so that the rotational inertia of the sphere has the same value about any

axis through the sphere’s center of mass. As a result, rotation about the axis connecting the

geometric center and the center of mass — precisely what θ1 measures — leaves the dynamics

invariant. By ignoring x and θ1, one can consider a reduced, five-dimensional version of the

sphere-plate control system, with state (θ2, θ3, ω). We will show controllability for the full

eight-dimensional system. We remark that the evolution equation for the angular velocities

(last of Eq. 20) appears to be more complicated than the rest of the equations of motion.

This seems to be a consequence of choosing to place the sphere’s center of mass away from

its geometric center. The evolution equation for ω̇ is simplified greatly if r = 0 instead,

however in that case one can check that ω̇3 = 0 and the system is uncontrollable.

The equations of motion reveal that the two control vector fields commute and thus they

can be thought of as spanning the tangent space of a two-dimensional submanifold in D.

Observation 1 Let f, g1, g2 ∈ R
8 be the drift and control vector fields corresponding to

the sphere-plate control equations (Eq. 25). Then, [g1, g2] = 0 and Int(g1, g2) is a two-

dimensional submanifold of D.

Proof: The drift and control vector fields corresponding to the dynamic model of the

sphere-plate system are given in Eq. 25. The statement [g1, g2] = 0 can be checked directly

from the algebraic expressions of g1, g2. Alternatively, notice that the vector fields f, g1, g2

are of the form:

f(θ, ω) =


f1(ω)

f2(θ, ω)

f3(θ, ω)

 , g1(θ) =


0

0

h(θ)e1

 , g2(θ) =


0

0

h(θ)e2

 (28)
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where f1 ∈ R2, f2, f3 ∈ R3 and θ is the vector of the sphere’s orientation angles. The 3× 3

matrix h(θ) enters only in the ω̇ equation but does not depend on ω. From this fact and

from the definition of the Lie bracket, we conclude that [g1, g2] = 0, and that all elements in

{f, g1, g2}LA involving [g1, g2] are identically zero.

The above statement implies that at least locally, there exists a coordinate change under

which both g1 and g2 are constant, therefore there exists a two-dimensional integral manifold

whose tangent space is spanned by g1, g2. We observe that g1, g2 are independent and nonzero.

Because SO(3) is parallelizable, we have TSO(3) = SO(3)× R
3. Therefore, Int(g1, g2) is a

two-dimensional submanifold of SO(3)× R
3.

Proposition 1 Consider a sphere-plate control system, with a unit sphere of mass ms and

a top plate of mass mp. Let αms be the sphere’s rotational inertia about any axis through its

center of mass. Furthermore, let d ∈ R3 be the location of the center of mass relative to the

center of the sphere, with |d| = r ≤ 1.

For x ∈ R2, Θ ∈ SO(3), ω ∈ R3 and u = [u1 u2 0]T , the set of equations

ẋ =

 ω2

−ω1


Θ̇ = S(ω)Θ

ω̇ = J−1
(
−S(Θd+ e3)S(ω)2Θd+

2

ms

S(e3)u
)

describes the motion of the sphere-plate system. This two-input system is controllable in the

eight-dimensional space D if and only if r > 0, i.e. if and only if the sphere’s center of mass

does not coincide with its geometric center.

Proof: If r = 0 then the center of mass is located on the segment joining the top

and bottom sphere-plate contacts. The torque applied to the sphere about the spin axis

is identically zero. Therefore the angular momentum of the sphere about the spin axis is

conserved and is an integral invariant for the system. We conclude that the system cannot

be controllable.
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If r > 0, let f(θ, ω) ∈ R
8 be the drift and g1(θ), g2(θ) ∈ R

8 be the control vector fields

associated with the sphere-plate control equations, after we have used feedback to eliminate

the drift terms in the equations for ω̇1, ω̇2 (see Eq.25 for the case of mp = 0). If the manifold

D was not reachable, every 8 × 8 matrix P composed of elements from {f, g1, g2}LA would

have a determinant vanishing on open sets. Because det(P ) is an analytic function of the

state, it cannot vanish on open sets without being identically zero. The following set of

elements of the taken from {f, g1, g2}LA:

g1, g2,

[f, g1], [f, g2],

[f, [f, g1]], [f, [f, g2]],

[f, [f, [f, g1]]], [f, [f, [f, g2]]],

form an 8×8 matrix P whose determinant is non-zero for generic choices of system parameters

and state values. We conclude that det(P ) can only vanish on isolated points, therefore the

above eight elements of {f, g1, g2}LA span almost everywhere in D. This fact combined

with Chow’s theorem, tell us that the Frobenius manifold spanned by {f, g1, g2}LA is locally

diffeomorphic to R
8 which precludes the existence of (non-trivial) integral invariants and

shows that D is reachable. Reachability implies that there exists a choice of control inputs

to steer the system from any initial state to any other state in D, thus the sphere-plate

system is controllable.

The existence of the integral invariant for r = 0 implies that the set of states Z − K,

corresponding to non-zero spin, is not reachable from K. For r > 0, the reachable set is

the entire manifold D. There does not appear to be a compact way to characterize the

elements of {f, g1, g2}LA and because their symbolic expressions take considerable space we

will not include them here. Note that we were able to show controllability for the system

using elements taken exclusively from the adf -chain of {f, g1, g2}LA (i.e. elements of the form

adkfg1 where adfg = [f, g]). This brings up the question of whether or not the system can be

linearized, with the linearized version being controllable. Although the distribution spanned

by {g1, g2} is integrable as we have shown (an immediate consequence of [g1, g2] = 0), it
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can be checked that the distribution generated by δ = {g1, g2, [f, g1], [f, g2]} is not integrable

(for example, [[f, g1], g2] /∈ span{δ}). Therefore any linearization of the sphere-plate control

equations gives rise to an uncontrollable system. Because the integrability test fails after

only the first two elements in the adf -chain, namely g1, g2, the sphere-plate system can be

thought of as a second-order linear system coupled with a sixth-order “genuinely” nonlinear

system.

2.4 Towards Generality

Controlling the angular momentum in a sphere-plate system can be viewed as a special case

of a more general spin-up problem [8]. Consider the n-dimensional control system:

ẋ = φ(x)
4
= f(x) +

m∑
1

gi(x)ui (29)

with the state evolving on a manifold X and (x, φ(x)) ∈ TX . We will call this the “base”

control system and use it to define a “derived” control system on T 2X by

ẍ = f(x) +
m∑
1

gi(x)ui (30)

with state (x, ẋ) ∈ TX . We could then pose the question: “given that the base system (Eq.

29) is controllable, under what conditions is the derived system (Eq. 30) also controllable?”

Towards answering this question we can offer the following facts:

Observation 2 The control vector fields of the base system (Eq. 29) defined on TX , com-

mute with each other. In addition, if the matrix [g1, ..., gm] has constant rank m then

Int(g1, ..., gm) is an m-dimensional submanifold of TX .

Proof: To show [gi, gj] = 0 for all i, j ∈ {1, ...,m}, use the definition of the Lie bracket

and the fact that ∂gi
∂ẋ

= 0. If the control fields are all independent and of constant rank then

Frobenius’ theorem gives us the existence of the integral manifold.

In general, once we pass from the base system to the derived system we can no longer

rely on the control vector fields to span additional directions by means of Lie bracketing. If
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there are m independent non-zero control fields, the remaining 2n −m directions must be

generated by bracketing with the drift f(x). In the case of a base system which is linear

time-invariant (LTI), the situation is simple:

Corollary 1 The LTI system ẍ = Ax + Bu x ∈ R
n, u ∈ R

m is controllable if and only if

the system ẋ = Ax+Bu is controllable.

Proof: The proof follows by the fact that the system ẍ = Ax + Bu is controllable if

and only if the matrix  0 B 0 AB 0 . . .

B 0 AB 0 A2B . . .


is full rank.

3 Simulation Results

The evolution of the sphere-plate system was simulated for a sphere of unit radius with mass

ms = 2.1kg and a = 0.5. The geometric center of the sphere was initially at x = [0 0]T .

The mass was located at a distance r = 1m from the center of the sphere, along the x-axis

of the bodyfixed frame. The mass of the top plate was mp = 0.5kg. Two simulations were

performed, one to spin-up the sphere starting from rest and the other to increase the angular

momentum of an already spinning sphere. In both cases, the top plate was required to be

stationary at the beginning and end of the simulation. The sphere-plate control equations

(Eq. 20) were used, with the external forces applied to the top plate being the control inputs

and no potential field present.

3.1 First Simulation: Spin-up of a Stationary System

The system was initially at rest, with the center of mass located on the sphere’s equator

i.e. Θ = I or equivalently, θ = 0. A constant external force u = [0 9]TN was applied to
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Figure 3: Spacefixed Evolution of Sphere - First Simulation.

the top plate for 1.3 seconds and then the top plate was brought to a stop by a high-gain

proportional control that servoed on the translational velocity of the sphere. Figure 3 shows

the spacefixed evolution of the sphere. The center of mass is shown as a small dark ball on

the surface of the sphere. To avoid occluding the sphere, the top plate was not drawn. The

trajectory of the bottom contact is plotted on the x− y plane. As the sphere rolls forward,

the center of mass follows the trajectory shown as a cross-hatched curve. When the top plate

comes to a stop at the end of the simulation, the center of mass continues to move with zero

latitudinal velocity and a constant longitudinal velocity, corresponding to a steady spin for

the sphere. Figure 4 shows the trajectory of the center of mass of the sphere, in a bodyfixed

coordinate frame whose origin is at the center of the sphere and whose axes remain parallel

to those of the spacefixed frame. The spin angular velocity ω3 is shown in Figure 5. Figure 6

shows the time history of the kinetic energy stored in the sphere. Once a constant spin was

achieved with the top plate at rest, the control inputs were such that the top plate remained

stationary. These forces can be computed from the equations of motion, as the solutions to
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Figure 6: Kinetic Energy of Sphere - First Simulation.

ω̇1 = ω̇2 = 0. They are:

u1 = −msω
2
3

(1 + sin θ2)

2
cos θ2 cos θ3 (31)

u2 = −msω
2
3

(1 + sin θ2)

2
cos θ2 sin θ3 (32)

3.2 Second Simulation: Increasing the System’s Angular Momen-

tum

A second simulation was performed to show an example of increasing the angular momentum

of an already spinning sphere. The inertia parameters were unchanged from the previous

simulation. The initial conditions were θ(0) = 0 and ω(0) = [0 0 2]T rad/s.

The strategy used to increase the energy associated with the spinning sphere was moti-

vated by physical intuition: With the top plate at rest, the control inputs of Eq. 31,32 will

keep the top plate stationary, (i.e. ω̇1 = ω̇2 = 0). In that case, the sphere will remain in the

same horizontal position while spinning with a constant angular velocity ω3. While in that

situation, we expect to be able to “pump” energy into the system by slightly “leading” the
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Figure 7: Spacefixed Evolution of Sphere - Second Simulation.

angle of rotation θ3:

u1 = −msω
2
3

(1 + sin θ2)

2
cos θ2 cos(θ3 + ε) (33)

u2 = −msω
2
3

(1 + sin θ2)

2
cos θ2 sin(θ3 + ε) (34)

In our simulation, we applied ε = 0.3rad starting at t = 1sec. At t = 3sec, the top plate

was again brought to rest using the same high-gain proportional control as in the previous

simulation. The spacefixed trajectory of the center of mass is shown in Figure 7. The

trajectory of the bottom contact is plotted on the x− y plane. Figure 8, shows the motion

of the center of mass in the bodyfixed coordinate frame described in Sec. 3.1. The center

of mass changes latitude as it moves, from its initial location on the equator to somewhere

closer to the pole. We would expect the spin to increase as a result of the decrease in the

effective radius of rotation. Aside from this however, the increased spin was also due to the

kinetic energy that was added into the system by the exogenous forces. Figures 9, 10 show
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Figure 8: Bodyfixed Evolution of Center of Mass - Second Simulation.

the time histories of the spin and the kinetic energy respectively.

4 Conclusions

We have formulated a dynamic model for a family of sphere-plate systems. These are eight-

dimensional nonholonomic systems that model a sphere rolling without slipping between

two parallel plates. Motivated by some recent questions on more general spin-up problems,

we have considered the control problem of spinning the sphere between the two plates by

means of exogenous forces applied to one of the plates. The drift and control vector fields

associated with the sphere-plate control system generate a Lie algebra that shows the system

to be genuinely nonlinear, in the sense that it cannot be approximated by a controllable linear

system. The control vector fields commute, as would be the case with any system of the form

ẍ = f(x) +
∑n

1 gi(x)ui, with x in a finite-dimensional manifold X . It would be interesting

to explore more general situations of this kind in order to find out under what conditions
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controllability of the system on TX translates to controllability of the system on T 2X , as

suggested in [8].

The sphere-plate system under consideration is controllable if and only if the sphere’s

center of mass and geometric center do not coincide. In that case, the system can be

excited so as to have a spinning motion by an appropriate choice of inputs. A sphere-plate

system without this inertial asymmetry has an integral invariant associated with the angular

momentum of the sphere. We have presented two control strategies for altering the angular

momentum of the sphere, starting from rest or from a constant spin. Although we were able

to find inputs that produced a steady spin for the sphere, the problem of finding optimal

controls (in the sense of minimizing the integral of uTu or some other cost functional) is still

open. The presence of drift and the lack of a compact characterization for the elements of

the controllability Lie algebra make this problem a good candidate for applying some type

of learning algorithm in order to obtain useful and efficient control inputs.

Appendix

Kinematic models for the sphere-plate system are discussed in [2],[10] and others. Briefly, let

u, v ∈ R be the velocities of the top plate, while (x, y) is the position of the bottom contact

relative to some coordinate system fixed on the bottom plate. If Θ ∈ SO(3) describes the

orientation of the sphere then the kinematics of the sphere-plate system are

ẋ = u

ẏ = v

Θ̇ = −S




u

v

0



Θ

(35)

where S : R3 → so(3) is the transformation defined in §2.1.

If z is the angle of rotation of the sphere about the axis through the top and bottom
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contacts then the equations

ẋ = u

ẏ = v

ż = xv − yu

(36)

represent a simplified kinematic model of the sphere-plate system, sometimes referred to as

the “nonholonomic integrator” [10]. The following result shows that if we require that the

top plate be stationary at t = 0 and t = T ≥ 0 then it is not possible to change the sphere’s

spin, ż.

Observation 3 Consider the kinematic model of the sphere-plate system given by Eq. 36.

If the sphere’s translational velocity is zero at t = 0 and t = T ≥ 0 then ż(0) = ż(T ).

Proof: From Eq. 36 we obtain

z̈ = xv̇ − yu̇ = xÿ − yẍ. (37)

Because the sphere’s translational velocity is zero at t = 0 and t = T , we have u(0) = u(T ) =

0 and v(0) = v(T ) = 0. Applying integration by parts to Eq. 37 gives:

∫ T

0
z̈ dt =

∫ T

0
(xÿ − yẍ)dt

= xẏ|T0 −
∫ T

0
ẋẏ dt− yẋ|T0 +

∫ T

0
ẋẏ dt = 0,

or ż(0) = ż(T ).
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